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We introduce a Markovian particle system which is a kind of lattice gas on Z
consisting of particles carrying energy and whose dynamics is a combination
of those of an exclusion process (for particles) and a zero-range process (for
energy). It has two conserved quantities, the number of particles and the total
energy. The process is reversible relative to certain product probability mea-
sures, but of non-gradient type. It is proved that under hydrodynamic scaling
the equilibrium fluctuation fields of two conserved quantities converge in law to
an infinite dimensional Ornstein–Uhlenbeck process.
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INTRODUCTION

Let Z denote the integer lattice. The zero-range-exclusion process that we
are to study is a Markov process on the state space X :=ZZ

+, the infinite
product of Z+ :={0, 1, 2,...}. Denote by g=(gx, x ¥ Z) a generic element
of X, and define

tx=1(gx > 0),

where 1(A) stands for the indicator of an event A. The process is regarded
as a gas of particles carrying energy. The site x is occupied by a particle if
tx=1 and vacant otherwise. Each particle has energy, represented by gx,
which takes discrete values 1, 2,... . A particle at site x jumps to a nearest
neighbor site y=x ± 1 at rate cex(gx) if y is vacant, where cex is a positive
function of k=1, 2,... . Between two adjacent particles the energies are



transferred unit by unit according to the same stochastic rule as that of the
zero range processes with a rate function czr. This dynamics has two con-
served quantities, the number of particles and the total energy. It is not a
gradient system. We shall assume that both cex and czr grow in the linear
order, a condition under which we can prove a suitable estimate for spec-
tral gaps of generators of the localized processes (cf. ref. 15). We shall
consider the time-evolution process of fluctuation fields in equilibrium
under the parabolic scaling and prove that it converges to those of an
infinite dimensional Ornstein–Uhlenbeck process. It is straightforward to
extend these results to the multidimensional model: the restriction to one
dimension is only for simplicity of exposition and notation.

The convergence of fluctuation processes under parabolic scaling has
been dealt with for various models (cf. refs. 2–4, 6, 13, 17, etc.). Among
them the results for non-gradient models are all based on Varadhan’s proof
of the hydrodynamic limit for a non-gradient Ginzburg–Landau model
(cf. ref. 20). One of the principal ingredients in that proof is the fundamen-
tal structure theorem of the quadratic form which is a limit of space-time
variance relative to the localized dynamics. It may well be said that the
convergence result on equilibrium fluctuations is an almost immediate
consequence of this theorem, possibly except for technical details that may
depend on the models. For the present model the space of spin values is not
compact: the energy current involves a term of quadratic growth in energy,
which the relative entropy alone can not control; in the Dirichlet form the
square of the gradient is multiplied by an unbounded factor of czr or cex;
a spectral gap estimate that is available for the moment is not uniform
in two conserved quantities although of proper order relative to the size
of physical space of the local system. These together cause difficulty for
adapting the argument of ref. 20 to prove hydrodynamic limit for the
present model. Of the equilibrium fluctuations, however, we can solve the
problem, which is more tractable than that of the density fields in non-
equilibrium. For the reasons advanced above the manner of how to control
unbounded spins is somewhat different from one for non-gradient Ginzburg–
Landau model which is only non-gradient model having unbounded spins
among those that have been previously studied. For the proof we shall
adapt the corresponding ones of refs. 8 and 11, albeit its basic idea is the
same as that of ref. 20. Recently equilibrium fluctuations are investigated
for other models in which there arise problems to be solved specific to the
models. (1, 5, 16)

The diffusion matrix D=D(p, r) that is conceived to be a diffusion
coefficient is defined by the variational formula due to Varadhan (20) (see (5)
in Section 1). The definition has to be justified. It is motivated by the fun-
damental structure theorem mentioned above that we need establish for the
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present model. It relates D with the (microscopic) current via microscopic
Fick’s law (fluctuation dissipation equation) that equates the current with
the density gradient multiplied by D from the left plus a fluctuation term.
In a heuristic level this leads one to expect that the hydrodynamic equation
for the limit densities p=p(t, h) and r=r(t, h) of our system should be

“

“t
1 p

r
2=

“

“h
D(p, r)

“

“h
1 p

r
2 ,

of which the validity has not been established.
If our process (on Z) is in the equilibrium of particle and energy den-

sities p and r, respectively and g(t)=(gx(t))x ¥ Z denotes a sample configu-
ration at time t of the process, the fluctuation field scaled with large
parameter N is the R2-valued measure on R given by

1YP
t, N(dh)

YE
t, N(dh)

2=
1

`N
C

x ¥ Z

1tx(N2t) − p
gx(N2t) − r

2 dx/N(dh) (h ¥ R)

where tx(t)=1(gx(t) > 0) and dx/N is the delta measure carrying unit mass
at x/N. Our main result in this paper asserts that YN

t :=(YP
t, N, YE

t, N) con-
verges in law to an infinite dimensional Ornstein–Uhlenbeck process,
Yt=(YP

t , YE
t ) say, which is a solution of the stochastic differential equation

1dYP
t

dYE
t

2=D
“

2

“h2
1YP

t

YE
t

2 dt+`2Dq
“

“h
1dw1

t

dw2
t

2 ,

where w1=(w1
t (h))t \ 0 is an infinite dimensional mean zero Brownian

motion with the variance functional t ||J||2
L2(R) (J ¥ C.

0 (R)), w2 an inde-
pendent copy of w1 and q=q(p,r) the covariance matrix for the pair
(t0, g0).

1. MODEL AND RESULTS

To give a precise definition of the process we introduce some nota-
tions. Let b=(x, y) be an oriented bond of Z, namely x and y are nearest
neighbor sites of Z, and (x, y) stands for an ordered pair of them. Define
the exclusion operator pex

b and zero-range operator pzr
b attached to b which

acts on the space of functions f of g ¥ X by

pex
b f(g)=f(Sb

exg) − f(g) and pzr
b f(g)=f(Sb

zrg) − f(g)
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where Sb
ex and Sb

zr are transformations on X defined as follows: if tx=1
and ty=0, then

(Sb
exg)z=˛gy, if z=x,

gx, if z=y,

gz, otherwise;

and if gx \ 2 and ty=1, then

(Sb
zrg)z=˛gx − 1, if z=x,

gy+1, if z=y,

gz, otherwise;

and in the remaining cases of g, both Sb
exg and Sb

zrg are set to be g, namely

Sb
exg=g if tx(1 − ty)=0,

Sb
zrg=g if 1(gx \ 2) ty=0.

Let cex and czr be two nonnegative functions on Z+ and define

Lb=cex(gx) pex
b +czr(gx) pzr

b .

Let L be a finite interval of Z. The transformations Sb
zr, Sb

ex and the
operators pex

b , pzr
b , Lb naturally act on the local configuration space ZL

+ and
the functions on it, respectively, provided b is an oriented bond of L. Let
Lg denote the set of all oriented bonds in L:

Lg={b=(x, y): x, y ¥ L, |x − y|=1}.

Then the infinitesimal generator LL of our Markovian particle process
on ZL

+, which we shall often call a lattice gas on L for convenience, is given
by

LL= C
b ¥ L*

Lb.

The lattice gas on Z will be a limit of those on finite lattices and
introduced later. It is assumed that for some positive constant a0,
cex(k) \ a0 for k \ 1 and czr(k) \ a0 for k \ 2. This especially implies that
the lattice gas on L with both the number of particles and the total energy
being specified is ergodic. We call our lattice gas a zero-range-exclusion
process whether its physical space is L or Z. For sake of convenience we set

cex(0)=0 and czr(0)=czr(1)=0.
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The functions cex and czr are further supposed to satisfy the following
conditions:

|czr(k) − czr(k+1)| [ a1 for all k \ 1; (1)

czr(k) − czr(l) \ a2 whenever k \ l+k0; (2)

a3k [ cex(k) [ a4k for all k \ 1. (3)

where a1, a2, a3, and k0 are positive constants. We shall sometimes write
pex

x, y, Sx, y
ex , Lx, y, etc. for pex

b , Sb
ex, Lb, etc. if b=(x, y).

Grand Canonical Measures. For a pair of constants 0 < p < 1 and
r > p let np, r=nZ

p, r denote the product probability measure on X whose
marginal laws are given by

np, r({g: gx=l}) :=˛
1 − p if l=0,

p
Za(p, r)

if l=1,

p
Za(p, r)

(a(p, r)) l − 1

czr(2) czr(3) · · · czr(l)
if l \ 2,

for all x ¥ Z. Here Za is the normalizing constant:

Za :=1+ C
.

l=2

a l − 1

czr(2) czr(3) · · · czr(l)

and a(p, r) is a positive constant depending on p and r and uniquely
determined by the relation

Enp, r[gx]=r,

where Enp, r denotes the expectation under the law np, r. Under the condition
imposed on czr the function a(p, r) is well defined. Clearly Enp, r[tx]=p.

For a finite interval L of Z we denote by nL
p, r the projection of np, r

to ZL
+. The lattice gas on L is reversible relative to the measures nL

p, r

(namely LL is symmetric relative to each of them) as is easily shown (see (4)
and (5) below), and these measures play the role of grandcanonical Gibbs
measures for the lattice gas.

The Operator Cb. It is convenient to introduce the transformations

Sbg=˛Sb
exg if ty=0,

Sb
zrg if ty=1,
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and the operators

Cb=txpex
b +1(gx \ 2) pzr

b ,

where b=(x, y). Alternatively the latter may also be defined by

Cb f(g)=f(Sbg) − f(g).

Let yxg be the configuration g ¥ X viewed from x, namely (yxg)y=gx+y.
We let it also act on a function f of g according to yx f(g)=f(yxg).
Setting

c01(g)=cex(g0)(1 − t1)+czr(g0) t1;

c10(g)=cex(g1)(1 − t0)+czr(g1) t0;

and cx, x+1=yxc01, cx+1, x=yxc10, we can write

Lb=cbCb.

The Dirichlet form for LL under the grandcanonical measure np, r is given
by

DL
p, r{f}=1

2 C
b ¥ L*

Enp, r[|Cb f|2 cb] (4)

for suitable functions f.

Diffusion Coefficient Matrix. To define the diffusion coefficient
matrix we need to introduce some more notations. A function f on X is
called local if f depends only on a finite number of coordinates of g ¥ X.
For the sake of convenience we consider only local functions which is real
valued and of at most polynomial growth. To be precise let L be a finite
subset of Z and FL the space of real functions on ZL

+ such that

|f(g)| [ K C
x ¥ L

gK
x

for some positive integer K. An element of FL may be regarded as a func-
tion on X in self-evident way. Let L(n) denote the interval { − n,..., n} … Z
and Fc the union 1.

n=1 FL(n). For f ¥ Fc we use the symbol f̃ to represent
the formal sum ;x yx f. It has meaning if C01 :=C0, 1 acts on it in such a
manner that

C01 f̃=C
x

C01yx f=C
x

yxCx, x+1 f,

where the infinite sums are actually finite sums.
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Let 0 < p < 1, r > p. Let q(p, r) denote the covariance matrix of t0

and g0 under np, r:

q(p, r)=R (1 − p) p (1 − p) r

(1 − p) r Enp, r |g0 − r|2
S .

For f
¯

=(f1, f2)T ¥ Fc ×Fc (T indicates the transpose) let

ĉ(p, r; f
¯

)=(ĉ i, j(p, r; f
¯

))1 [ i, j [ 2

be a 2 × 2 symmetric matrix whose quadratic form is given by

a
¯

· ĉ(p, r; f
¯

) a
¯

=Enp, r[(C01{a(t0+f̃1)+b(g0+f̃2)})2 c01]

where a
¯

=(a, b)T, a two-dimensional real column vector, and · indicates
the inner product in R × R; also define a 2 × 2 symmetric matrix ĉ(p, r) via
the variational formula:

a
¯

· ĉ(p, r) a
¯

= inf
f
¯

¥ Fc ×Fc

a
¯

· ĉ(p, r; f
¯

) a
¯

.

Then the diffusion coefficient matrix is defined by

D(p, r)=ĉ(p, r) q−1(p, r), (5)

where q−1(p, r) denotes the inverse matrix of q(p, r). The matrix ĉ(p, r),
as well as q−1(p, r), is positive definite. This does not imply that D(p, r) is
positive definite but implies that both of two eigenvalues of D(p, r) are
positive and if they coincide, then D(p, r) is a constant times the unit
matrix.

The Lattice Gas on Z. Now we consider an infinite particle system
on the whole lattice Z. Its formal generator is

Lf(g)= C
b ¥ Z*

cb(g) Cb f(g), f ¥ Fc.

The following theorem is a consequence from a standard theory of Markov
semigroups (cf., eg., ref. 7). The parameters p and r are supposed to be
given as before.

Theorem A. (i) The operator L defined on Fc as above is closable
and its smallest closed extension, denoted by L, in the space L2(np, r, X)
generates a strongly continuous Markov semigroup on L2(np, r, X).

Equilibrium Fluctuations for Zero-Range-Exclusion Processes 1429



(ii) Denote by S(t), t \ 0 this semigroup, and by SK(t) the semigroup
on L2(nL(K)

p, r , XL(K)) generated by LL(K). Then

s- lim
K Q .

SK(t) f=S(t) f, f ¥ Fc

uniformly in t on each finite interval. Here SK(t) acts on f(g), g ¥ X by
regarding f as a function of g|L(K) ¥ ZL(K)

+ with the other coordinates being
frozen; the strong limit, s-lim, means the convergence in the L2-norm.

Let the configuration space X be endowed with the product topology.
It may then be regarded as a complete and separable metric space. The
processes generated by LL(K) may be considered as processes on X with gy,
y ¨ L(K) being frozen as for SK(t) in Theorem A. Let these process start
with the equilibrium state np, r. Then we have a sequence of probability laws
on the Skorohod space D([0, T], X), which is tight as is easily assured. As
a limit process we have a stationary Markov process on X such that its
transition law is given by S(t) and its marginal law is np, r and that its
sample paths are continuous from the right and have limits from the left
with probability one. We denote the probability law of the process by
Peq(p, r) and the corresponding expectation by Eeq(p, r), and write g(t), t \ 0
for a generic sample path of the process.

The Fluctuation Fields. Define two random functionals YP
t, N and

YE
t, N by

YP
t, N(J)=

1

`N
C

x ¥ Z
J(x/N)(tx(N2t) − p),

YE
t, N(J)=

1

`N
C

x ¥ Z
J(x/N)(gx(N2t) − r),

where J ¥ C.

0 (R) (namely J is a compactly supported smooth function)
and

tx(t)=1(gx(t) > 0).

The random functionals YP
t, N and YE

t, N are fluctuation fields of particle
density and energy density, respectively, and may be understood to be
processes taking values in the space of, eg., signed measures. Its limiting
process will take values in the space of tempered distribution. Let H (−l)

(l ¥ R) denote the completion of the space of rapidly decreasing functions
f(h) with the norm ||f||(−l) :=||(h2 − (d2/dh2))−l/2 f||L2. Then the limit
process, Yt=(YP

t , YE
t )T say, will be a H (−l)-valued process (with l > 2)

1430 Uchiyama



whose sample path is in the space of continuous trajectories C([0, T], H(−l)).
The main theorem of this paper is stated as follows.

Theorem 1. Let l > 2. Then under the equilibrium measure Peq(p, r)

the sequence of H (−l)-valued processes YN
t :=(YP

t, N, YE
t, N)T weakly con-

verges to the Ornstein–Uhlenbeck process in H (−l) which is characterized
by the following stochastic integral equation

Yt(J)=Y0(J)+F
t

0
D(p, r) Ys(Jœ) ds+`2ĉ(p, r) wt(JŒ).

Here wt=(w1
t , w2

t )T with w1
t being a H (−l+1)-valued Wiener process whose

variance is E |w1
t (J)|2=t ||J||2

L2(R) and w2
t being an independent copy of w1

t

and Yt(J)=(YP
t (J), YE

t (J))T.

Remark. Define for k \ 0

hk(h)=(`p 2kk!)−1/2 eh2/2(−d/dh)k e−h2
(h ¥ R).

Then {hk} constitutes an orthonormal basis of eigen-functions of the self-
adjoint operator h2 − (d/dh)2 in L2(R) with eigen-values 2k+1, so that the
norm || · ||(−l) may be expressed as

||f||(−l)=rC |(f, hk)L2 |2 (2k+1)−ls−1/2.

We also have the formulas 2hhk=`2k hk − 1+`2k+2 hk+1 and 2h −

k=
`2k hk − 1 − `k+1 hk+1 and the bound ||hk ||L1 [ 4(k+1)1/4, which are often
useful for showing the tightness of H (−l)-valued processes. (Cf. eg., ref. 9.)

The Space-Time Correlation of (tx(t), gx(t)). Let KD denote the
fundamental solution to the initial value problem for the heat equation
“

“t u
¯

=DT “
2

“h2 u
¯

(u
¯

=u
¯

(h, t) and DT is the transpose of D) and Ut a matrix of
operators which represents the corresponding convolution semigroup:
Ut J¯

(h)=>.

−.
KD(t, h − hŒ) J

¯
(hŒ) dhŒ. Then the covariance function of the

limit process Yt in Theorem 1 is given by

E[(Y0, J
¯ 1)(Yt, J

¯ 2)]=F
R

q(p, r) Ut J¯ 2(h) · J
¯ 1(h) dh,

where E denotes the expectation for the limit process.
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Let S(x, t)=Sp, r(x, t) be the symmetric 2 × 2 matrix, depending on
(x, t) ¥ Z × [0, .), whose quadratic form is

a
¯

· S(x, t) a
¯

=Eeq(p, r)[{a(t0(0) − p)+b(g0(0) − r)}{a(tx(t) − p)+b(gx(t) − r)}].

Since np, r is invariant under the translation, S(x, t) is the covariance matrix
of (tx(s), gx(s)) and its space-time translation (tx+y(s+t), gx+y(s+t)).
Hence if we define

R(x, t) :=q−1(p, r) S(x, t),

then R(x − y, t − s) is the space-time correlation coefficient of (tx(t), gx(t)).
The next theorem, which relates R with KD somehow directly, is

deduced from Theorem 1 (cf. ref. 19 for proof ).

Theorem 2. For J
¯

=(J1, J2)T ¥ C.

0 (R) × C.

0 (R)

lim
N Q .

C
x ¥ Z

R(x, N2t) J
¯

(x/N)=F
.

−.

KD(h, t) J
¯

(h) dh.

One may expect that the diffusion coefficient matrix would be given by

DT=lim
t Q .

1
2t

C
x ¥ Z

x2R(x, t),

and this would lead to the Green–Kubo formula for D (cf. Spohn (18)).
However, we know too little on the behavior of the tail of R to verify these
assertions.

To conclude this section we point out that in the derivation of the
hydrodynamic limit to the present model there arises difficulty due to
unboundedness of spin values. While the marginal of our grandcanonical
measure is roughly Poisson, the energy current from the site 0 to the site 1,
being given by

wE
01 :=cex(g0)(1 − t1) g0+czr(g0) t1 − cex(g1)(1 − t0) g1 − czr(g1) t0,

involves the term cex(g0) g0 that is bounded below by dg2
0 (d > 0) and cannot

be controlled by the grandcanonical measure via the entropy inequality as in
the case of Ginzburg–Landau model, the logarithm of the Poisson density
function being of the order O(g0 log g0). We can show that the expectation
of the space-time average of the variable [(tx − 1+tx+1) g3

x+g2
x](N2t) for
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processes on the discrete torus Z/NZ is bounded as N tends to infinity but
do not know of the corresponding uniform integrability (that is crucial for
a standard truncation argument). Even if we assume that czr and cex are
constant, the situation does not much change: we would be able to show
results on the central limit theorem variance analogous to those given in
Section 2 and accordingly on the equilibrium fluctuation, but do not know
of uniform integrability of gx(tN2); moreover L−1

{0, 1}{g0 − g1} grows as
(g0+g1)2 on the event t0=t1=1 (cf. Lemma 4), which causes an addi-
tional difficulty for derivation of the hydrodynamic limit.

The rest of the paper is organized as follows. In Section 2 we shall
introduce a quadratic form which is defined as the limit of central limit
theorem variances for time evolutions of the local processes and state the
structure theorem for the quadratic form, which is fundamental for the
proof of Theorem 1. While its proof is outlined there, the details are
postponed to Sections 4 and 5. The proof of Theorem 1 will be given in
Section 3 where results of Section 2 ( Theorem 3 and Lemma 7) are
applied. In Section 4 we shall introduce a space of functions on X called
closed forms and determine the structure of the space, an equivalent of the
structure theorem of Section 2. In Section 5 we give a proof of a lemma
used in Section 4.

2. CENTRAL LIMIT THEOREM VARIANCE

This section will be divided into three subsections. The main result of
it is given in the second subsection while its proof is outlined in the third.

2.1. Canonical Measures and Reversibility Relations

The canonical measure for the configurations on L(n) with the
number of particles m and the total energy E is the conditional law

Pn, m, E[ · ]=
nL(n)

p, r ( · 5 {|t|L(n)=m, |g|L(n)=E})
np, r({|t|L(n)=m, |g|L(n)=E})

.

Here |t|L=;x ¥ L tx and |g|L=;x ¥ L gx. The reversibility is equivalent to
the set of the detailed balance conditions

czr(gx) tyPn, m, E{g}=czr(gy+1) 1(gx \ 2) Pn, m, E{Sx, y
zr g} (6)

and

Pn, m, E{g}=Pn, m, E{Sx, y
ex g}, (7)
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both of which are valid for any n, m, E ¥ Z+ (m [ n, E), for any two sites
x, y ¥ L(n) and for any configuration g on L(n). Here P{g} denotes the
P-measure of a single point set {g}. From (6) it follows that for any func-
tions f and g of g,

Oczr(gx) ty f(Sx, y
zr g) g(g)Pn, m, E=Oczr(gy) tx f(g) g(Sy, x

zr g)Pn, m, E;

the analogue for Sx, y
ex would be obvious. Here, and throughout the rest

of this paper, O ·Pn, m, E indicates the expectation by Pn, m, E. The Dirichlet
form on the configuration space Xn, m, E :={g ¥ ZL(n)

+ : |t|L(n)=m, |g|L(n)=E}
is accordingly given by

Dn, m, E{f} := −OfLn, m, E fPn, m, E

= C
b ¥ L*(n)

Db
n, m, E{f},

where Lg(n)=(L(n))g, Ln, m, E denotes the operator LL(n) restricted to the
space of functions f on Xn, m, E and

Db
n, m, E{f}=1

2 O(Cb f)2 cbPn, m, E.

From the reversibility relations (6) and (7) it follows that

OfL01 gPn, m, E=OL10 f · gPn, m, E

(recall Lb=cbCb ) and that

Of · (L01+L10) gPn, m, E=O(C01 f)(C01 g) c01Pn, m, E; (8)

in particular, for the associated bilinear form,

D01
n, m, E(f, g)=D10

n, m, E(g, f).

2.2. Central Limit Theorem Variance

We introduce a function space on which the central limit theorem
variance is well defined. The numbers p and r are fixed so that 0 < p < 1
and r \ p unless otherwise specified.

Definition 1. Let G denote the linear space of all functions h ¥ Fc of
the form

LIH := C
b ¥ I*

LbH=h (9)
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where I=I(h) is a (finite) interval of Z and H is a local function such that
Ig is not void and

CbH ¥ Fc for all b ¥ Ig. (10)

(We can and shall choose H such that the expectation of H by each
canonical measure on I vanishes.) For a pair I=I(h) and H chosen as
above, we write H=(LI(h))−1 h.

If h ¥ Fc satisfies

Enp, r[h; |t|I=m, |g|I=E | FZ0I]=0 for all m [ ÄI and E \ m

(ÄA stands for the cardinality of a set A), then it admits a representation
(9), whereas the condition (10) still remains to be verified. (Recall that (10)
means that CbH grows with at most polynomial order.) The linear space

{Lf: f ¥ Fc}

is obviously included in G. The currents wP
01, wE

01 which are defined by

wP
01=−L{0, 1}{t0} and wE

01=−L{0, 1}{g0}

are also in G (notice that L{0, 1}=L01+L10 ): the requirements are satisfied
with I={0, 1}; and H=−t0 or H=−g0. It may be remarked that explicit
forms of wP

01 or wE
01 are not important at all for our analysis in this paper.

For h and g from G, define (for n large enough)

Vn, m, E(h, g)=
1
2n

7 C
|x| < nŒ

yxh · (−Ln, m, E)−1 C
|x| < nŒ

yx g8
n, m, E

.

Here nŒ is a positive integer such that n − nŒ is a constant (independent of n)
chosen so that both sums under the expectation are FL(n)-measurable but
otherwise may be arbitrarily determined. Notice that (−Ln, m, E)−1 is well
defined as a transformation on the space {F ¥ C(Xn, m, E) : O F Pn, m, E=0}.
The following theorem, originally discovered for a Ginzburg–Landau
model, (20) reveals a structure of the space G equipped with the quadratic
form of V=lim Vn, m, E (see also Lemma 10 in the next section for a related
result).

Theorem 3. For every h, g ¥ G, there exists a following limit

lim
(m/2n, E/2n) Q (p, r)

Vn, m, E(h, g),
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where the limit is taken in such a way that n, m and E are sent to infinity so
that m/2n Q p and E/2n Q r. This limit makes a bilinear form on G and is
denoted by

Vp, r(h, g).

Let Fc, b be the set of all bounded functions from Fc. Then the subspace

Go :={awP
01+bwE

01 − Lf : a, b ¥ R, f ¥ Fc, b}

is dense in G with respect to the quadratic form Vp, r{h} :=Vp, r(h, h).

Theorem 3 says that every h ¥ G can be approximated by an element
of Go in the metric `Vp, r as accurately as one needs. We shall apply this to
the gradients

N−t :=t0 − t1 and N−g :=g0 − g1.

To this end we need the following lemma.

Lemma 4. Both N−t and N−g are in G with I={0, 1}. If HP and
HE denote the corresponding H’s (namely, LIHP=N−t and LIHE=N−g),
then CbHP and CbHE are bounded away from both infinity and zero for
b=(0, 1) and b=(1, 0), provided that (1) and (2) are satisfied.

Proof. Clearly we can take I={0, 1}. When |t|I=1, HP and HE can
be explicitly written down:

HE(g)=−
g0

c+
ex(g0)

+
g1

c+
ex(g1)

,

where c+
ex(k)=cex(k) if k ] 0 and c+

ex(0)=1; and similarly for HP. So, let
|t|I=2. Then N−t=0; hence HP=0. As for N−g, it is first noticed that we
may write HE(g)=j(g0) since E :=g0+g1 is conserved under the dynam-
ics on I. We need to solve the equation

czr(r)(j(r − 1) − j(r))+czr(E − r)(j(r+1) − j(r))=2r − E,

where r ranges from 1 to E. This is uniquely solved up to additive con-
stants. The difference g(r) :=j(r) − j(r+1) is recursively determined by

g(r)=
E − 2r

czr(E − r)
+

czr(r)
czr(E − r)

g(r − 1) (1 [ r [ E − 2)
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where g(0) may be chosen arbitrarily since czr(1)=0. We have to show
that g is uniformly bounded. By symmetry we observe that g(r)=
g(E − r − 1), which dispenses the consideration for r \ E/2. Recalling that
by the hypothesis (2) czr(E − r) − czr(r) \ a2( > 0) if 2r [ E − k0, we set

M=sup
E \ 1

sup
r \ 1 : 2r [ E − k0

E − 2r
czr(E − r) − czr(r)

,

so that g(1) [ M, and

E − 2r+czr(r) M
czr(E − r)

[ M if 1 [ r [
E − k0

2
.

By induction on r we infer that g(r) [ M if 2r [ E − k0, and by (1) and (2)
M < .. Hence g is bounded above by a constant independent of E. The
lower bound may be obtained by replacing the double sup’s in the defini-
tion of M with double inf’s. L

In the following discussions the linear space G (with the natural iden-
tification among its elements) will be regarded as a real pre-Hilbert space
with the inner product V=Vp, r. By using the reversibility (8) and the
identity

L{x, x+1} C
y

y(aty+bgy)=yx(awP
01+bwE

01), (11)

the following relations (in common with the other models) are easily
verified without resorting to Theorem 3 of Subsection 2.3 (see also Lemma 7):

V(Lf, g − y1 g)=0; (12)

V(awP
01+bwE

01, aŒ N−t+bŒ N−g)=a
¯

Œ · q(p, r) a
¯

; (13)

V{awP
01+bwE

01 − a
¯

· Lf
¯

}=a
¯

· ĉ(p, r; f
¯

) a
¯

. (14)

Here f, g ¥ Fc, f
¯

¥ Fc ×Fc, and a
¯

=(a, b)T, a
¯

Œ=(aŒ, bŒ)T ¥ R × R.
Since q(p, r) is regular, from (12) and (13) and Theorem 3 we infer

that {a N−t+b N−g+Lf : a, b ¥ R, f ¥ Fc, b} is dense in G. The orthogonal
projections of wP

01 and wE
01 on the two dimensional space spanned by N−t

and N−g are of course linear combinations of N−t and N−g. Let
D°=D°(p, r) be the matrix of coefficients in these linear combinations so
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that the orthogonal projection of awP
01+bwE

01 is given by a
¯

· D°(N−t, N−g)T.
Then

inf
f
¯

¥ Fc, b ×Fc, b

sup
|a
¯

|=1
V{a

¯
· ((wP

01, wE
01)T − Lf

¯
− D°(N−t, N−g)T)}=0. (15)

Let A=A(p, r) be a symmetric 2 × 2 matrix whose quadratic form is

a
¯

· Aa
¯

=Vp, r{a N−t+b N−g}.

Proposition 5. The matrix D°(p, r) defined as above agrees with
D(p, r). Moreover it holds that D(p, r) A(p, r)=q(p, r) and for f

¯
¥

Fc, b ×Fc, b

V{a
¯

· ((wP
01, wE

01)T − Lf
¯

− D(p, r)(N−t, N−g)T)}

=a
¯

· [ĉ(p, r; f
¯

) − ĉ(p, r)] a
¯

.

Proof. The proof is an elementary linear algebra in the pre-Hilbert
space (G, V). Put W=awP

01+bwE
01. Then from the fact mentioned right

before (15) it follows that for every a
¯

and a
¯

Œ ¥ R × R,

V(a
¯

Œ · D°(N−t, N−g)T, W − a
¯

· D°(N−t, N−g)T)=0.

From this together with (13) and (14) we deduce first that

V(a
¯

Œ · D°(N−t, N−g)T, a
¯

· D°(N−t, N−g)T)=a
¯

Œ · D°q(p, r) a
¯

,

which in particular implies that D°q(p, r) is symmetric, and then that

V{W − a
¯

· Lf
¯

− a
¯

· D°(N−t, N−g)T}=a
¯

· [ĉ(p, r; f
¯

) − D°q(p, r)] a
¯

.

Recalling the definition of D(p, r) and the formula (15) we now see that
D°=D(p, r). The identity D(p, r) A(p, r)=q(p, r) may be seen by
replacing a

¯
Œ · D° with a

¯
Œ · in the second equality above. L

Remark. Let o
¯

=o
¯

(p, r) and ō=ō(p, r) stand for the eigen-values
of D(p, r) such that o

¯
[ ō. By employing Lemma 7 in the next subsection

we infer that a
¯

· Aa
¯

=V{a N−t+b N−g} [ Enp, r[(C01{aHP+bHE})2 c01]
where HP and HE are the functions given in Lemma 4. By using this and
the trivial bound a

¯
· ĉa

¯
[ Enp, r[(C01{at0+bg0})2 c01] together with D=ĉq−1

=qA−1, we can prove that for some positive constants m and M,

m
p+(1+a)−1 [ o

¯
[ ō [ M(1+a) (r \ p > 0),
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where a=a(p, r) is the positive parameter appearing in the definition of
np, r (ref. 19).

2.3. Outline of the Proof of Theorem 3

The proof of Theorem 3 is based on a characterization of a certain
class of the closed forms which are associated with the operators Cb. On
this topic we shall discuss in Sections 4 and 5. Taking what will be proved
in these sections for granted we here give an outline of the proof of
Theorem 3 to assure that the proofs for other models can be adapted to the
present model. Some of the result given in this section will be applied in
succeeding sections. We shall mostly follow the formulation of Varadhan–
Yau. (21)

Once the existence of the limiting value V{h} is established, the other
half of Theorem 3, namely the assertion that Go is dense in G is equivalent
that V{h} :=V(h, h) (h ¥ G) admits the following variational formula

V{h}=sup
g ¥ Go

[2V(g, h) − V{g}].

For its proof it suffices to show

lim sup
(m/2n, E/2n) Q (p, r)

Vn, m, E(h, h) [ sup
g ¥ Go

[2V(g, h) − V{g}], (16)

the lower bound being obvious. Moreover if the existence of V(g, h)
appearing in the right-hand side is shown (we know of that for V{g}), this
implies the existence of V{h}, so that the proof of the theorem will be
complete.

In the following computation involving H=L−1
I h, I=I(h) (cf. Defi-

nition 1), the equalities

OuyxhPn, m, E= − 1
2 C

b ¥ I*
OCb+xu · yx(cbCbH)Pn, m, E

= − C
b ¥ I*

Db+x
n, m, E(u, yxH) (17)

valid for every FL(n)-measurable function u, are useful.
For a local function f=f(g−r,..., gr) and for a

¯
=(a, b)T we set

un
a
¯

, f= C
|x| [ n

x(atx+bgx)+ C
|x| [ n − r

yx f
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and

Yy, y+1
a
¯

, f =Cy, y+1(aty+bgy+f̃);

also set for h ¥ G,

Fh= C
(x, x+1) ¥ I*

C0, 1(y−xH) (H=L−1
I(h)h).

For b ¥ Lg(K − 2r) we have Cbun
a
¯

, f=Yb
a
¯

, f. The following lemma is easily
shown by using (17).

Lemma 6. Let un
a, f, Fh, Yb

a, f be defined as above. Then

Oun
a
¯

, f h̄0, nŒ − rPn, m, E=−OY0, 1
a
¯

, fFhc01Pn, m, E.

The next lemma will be applied in various ways. It in particular
guarantees that in the definition of Vn, m, E{h} the contribution of individual
yxh is of order O(1/n) uniformly and hence negligible for finding its limit
value V{h}.

Lemma 7. Let h ¥ G and ax and n be real constants and a positive
integer, respectively. If L is a finite subset of Z with 1x ¥ L yxI(h) … L(n)
and if F=;x ¥ L axyxh, then for every m and E

OF(−Ln, m, E)−1 FPn, m, E [ Oh(−LI)−1 hPn, m, E (ÄIg) C
x ¥ L

|ax |2.

Proof. This proof is the same as given in ref. 21. Let h=LIh. Taking
u=un :=(−LL(n))−1 F (which means that un ¥ FL(n) as well as − LL(n)un

=F) in (17) we see that OF(−LL(n))−1 FPn, m, E equals

OFunPn, m, E=1
2 C

x ¥ L

C
b ¥ I*

axOcb+x · Cb+xyxH · Cb+xunPn, m, E.

By Schwarz inequality and the assumption on L we infer that the right
hand-side is bounded by 1

2 `2C ;x ¥ L |ax |2
`2(ÄI) Dn, m, E{un}, where

C :=1
2 C

b ¥ I*
O(CbH)2 cbPn, m, E=Oh(−LI)−1 hPn, m, E.

This proves the inequality of the lemma since OFunPn, m, E=Dn, m, E{u}. L

We deduce from the identity (11) with the help of Lemma 7 that

Oun
a
¯

, f h̄0, nŒPn, m, E=Vn, m, E(awP
01+bwE

01+Lf, h)+O(1/`n),
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and then from this and Lemma 6 that for g ¥ Go, V(g, h) exists and is given
by the formula

V(awP
01+bwE

01+Lf, h)=Enp, r[Y01
a
¯

, fFhc01]. (18)

On recalling that a
¯

· ĉ(p, r; f
¯

) a
¯

=Enp, r[(Y01
a
¯

, f)2 c01] if f=af1+bf2,
f
¯

=(f1, f2), this together with (14) yields

2V(g, h) − V(g, g)=(2Enp, r[Y01
a
¯

, fFhc01] − 1
2 Enp, r[(Y01

a
¯

, f)2 c01]), (19)

where g=awP
01+bwE

01+Lf. It remains to prove the upper estimate (16)
into which the relation (19) is to be substituted.

For each positive constant C > 0, let Hp, r, C be the set of all functions
Y=Y(g) of the form

Y=C01(Av|x| [ k yx f), k ¥ N, f ¥ Fc

with f which satisfies

Av |x| [ k Enp, r[(C01yx f)2 c01] [ C,

and define

Hp, r= 0
C \ 1

Hp, r, C
cn,

where Ā cn denotes the closure of A … L2(c01np, r, X).

Lemma 8. For every h ¥ G,

lim sup
(m/2n, E/2n) Q (p, r)

Vn, m, E{h} [ sup
Y ¥ Hp, r

(2Enp, r[YFhc01] − 1
2 Enp, r[Y2c01]).

If we show the inclusion

Hp, r … {Y01
a
¯

, f: a
¯

¥ R × R, f ¥ Fc, b}
cn

, (20)

then the required upper bound (16) follows from Lemma 8. We postpone
the proof of (20) until Sections 4 and 5 since the arguments for it are inde-
pendent of those given here as well as in the next section where Theorem 1
will be proved. The proof of Lemma 8 is carried out by a compactness
argument in L2(c01np, r, X) as in ref. 20 (see also refs. 10 and 21) with the
help of the following lemma.
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Lemma 9. If h ¥ G and un=(−LL(n))−1 ; |x| < nŒ yxh, then for each
K > 0

Vn, m, E{h}=
1
4n

C
b ¥ L*(n)

O(Cbun)2 cbPn, m, E [ CK if E/m [ K (21)

and

Vn, m, E{h}=
1
4n

C
|x| < nŒ

Ocx, x+1Cx, x+1un · yxFhPn, m, E+o(1),

where o(1) vanishes as n Q . uniformly in m, E as long as E/m [ K.

Proof. We omit the subscripts n, m, E from O ·Pn, m, E. The identity of
(21) follows from Vn, m, E{h}= 1

2n Oun(−LL(n)) unP and the last bound follows
from Lemma 7. By the basic relation (17) we observe that

Vn, m, E{h}= −7un C
|x| < nŒ

yxh8

=
− 1

2(2nŒ − 1)
C

|x| < nŒ

C
b: b − x ¥ I*

OcbCbun · CbyxHP

=
− 1

2(2nŒ − 1)
C

b ¥ Z*
C

x: b − x ¥ I*, |x| < nŒ

OcbCbun · CbyxHP.

Noticing that ;x: b − x ¥ I* cbCbyxH=yy(Fhc01) if b=(y, y+1), from (21) we
obtain the bound |OcbCbun · CbyxHP| [ `4nCKO(CbH)2 cbP, so that the con-
tribution of the (unoriented) bonds {y, y+1} such that |y − ( ± nŒ)| [ ÄI+1
is at most O(1/`n). Finally substituting the identity ;x: b − x ¥ I* CbyxH
=yyFh we find the relation of the lemma. L

We conclude this section by proving a lemma that supplements
Theorem 3: it in particular implies continuous dependence of D(p, r) on
(p, r) in view of the identity D(p, r)=q(p, r) A−1(p, r) (Proposition 5).
If p=r=0 and p=r=1, we set V0, 0=V1, 1=0. Notice that if r > p=1,
the process is reduced to the zero-range process, so that V1, r is well
defined.

Lemma 10. For every h, g ¥ G, the convergence of Vn, m, E(h, g) as
the pair (m/2n, E/2n) approaching (p, r) is uniform in p ¥ [0, 1] and
r \ p as long as the limit is taken under the restriction that E/m is
bounded. Moreover Vp, r(h, g) is jointly continuous with respect to
p ¥ [0, 1] and r ¥ [p, Kp] for each K.
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Proof. It suffices to show that for each K \ 2,

lim
m/2n Q 0

sup
E [ Km

Vn, m, E{h}=0 and lim
(m/2n, E/2n) Q (1, 1)

Vn, m, E{h}=0 (22)

since the asserted uniformity of convergence and continuity of the limit
function are standard facts resulting from the manner of convergence. If
u=un=(−LL(n), m, E)−1 ; |x| < nŒ yxh, then by Lemma 7

Vn, m, E{h} [ 1
2 (ÄI(h)) C

b ¥ I*
O(CbH)2 cbPn, m, E,

of which the right-hand side vanishes in the both limits as desired. L

3. PROOF OF THEOREM 1

Recall that Peq=Peq(p, r) is the measure of stationary process on X
starting with np, r and a sample path is denoted by g(t). For the proof of
Theorem 1 we need the following proposition.

Proposition 11. Let h ¥ G and put FN(g)=`N ;x ¥ Z J(x/N) yxh(g).
Then, for any n large enough that h ¥ FL(n),

Eeq
5 sup

0 [ t [ T

:F t

0
FN(g(N2s)) ds :

26 [
27T

4
||J||2

N, L2 En[Vn, |t|L(n), |g|L(n)
{h}]+

Cn

N2 ,

where ||J||2
N, L2= 1

N ;x ¥ Z |J(x/N)|2 and n=np, r; the constant Cn=Cn, T, h, J

may be taken to be T2 ||Jœ||2
L2 n(h2) n5.

Proof. The proof is divided into two steps, of which the first step is a
special case of Lemmas 4.3 of ref. 5.

Step 1. We claim that for every H ¥ Fc,

Eeq
5 sup

0 [ t [ T

:F t

0
(N2LH)(g(N2s)) ds :

26 [
27
8

TEn[H(−N2L) H]. (23)

Analogous inequalities also hold true for localized processes generated by
LL(K). For the proof of (23) we write yt for H(g(N2t)) and set

Mt=yt − y0 − F
t

0
(N2LH)(g(N2s)) ds
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and

Mg
t =yT − t − yT − F

T

T − t
(N2LH)(g(N2s)) ds

so that

− F
t

0
(N2LH)(g(N2s)) ds=1

2 (Mt+Mg
T − Mg

T − t).

The process Mg
t , 0 [ t [ T, is a backward martingale, namely it is a

martingale relative to the filtration Fg
t =s{YN

T − s: 0 [ s [ t}. Now (23)
follows from Doob’s inequality and the identities Eeq |MT |2=Eeq |Mg

T |2=
2TEn[H(−N2L) H].

Step 2. Put Gn=(2n)−1 ;y: |y| < nŒ yyh, where nŒ is the largest integer
among those for which Gn ¥ FL(n). We may then replace FN by

FN
n :=`N C

x ¥ Z
J(x/N) yxGn.

In fact the error to the expectation which we are to estimate is at most
T2 ||Jœ||2

L2 n(h2) n5 as is easily computed by noticing that n(hyxh)=0 for
|x| > n and |J(u+d)+J(u − d) − 2J(u)|2 [ (2d3/3) >d

−d |Jœ(u+r)|2 dr.
We may suppose that J vanishes outside a finite interval. Let

(gK(t), PK
eq) be a local process generated by LL(K) (see the definition of

the process g(t) given right after Theorem A of Section 1). We apply
inequality (23) for gK(t) with H=(−N2LL(K))−1 FN

n to see that

Eeq
5 sup

0 [ t [ T

:F t

0
FN

n (g(N2s)) ds :
26= lim

K Q .

EK
eq
5 sup

0 [ t [ T

:F t

0
FN

n (gK(N2s)) ds :
26

[ (27/8) T lim
K Q .

En[FN
n (−N2LL(K))−1 FN

n ],

where the first equality is due to the fact that if f ¥ Fc, sup 0 [ t [ T

|> t
0 f(g(s)) ds| is a continuous function on the Skorohod space. To estimate

the expectation in the last line we first take conditional expectation given
m=|t|L(K) and E=|g|L(K). According to Lemma 7 this conditional expec-
tation is bounded by (ÄIg(Gn)) ||J||2

N, L2 OGn(−LI(Gn))−1 GnPK, |t|L(K), |g|L(K)
.

Since the interval I(Gn) may be chosen to be L(n), this yields that for
K > n,

En[FN
n (−N2LK)−1 FN

n ] [ 4n ||J||2
N, L2 En[Gn(−LL(n))−1 Gn].

On rewriting the right-hand side by means of Vn, m, E the inequality of the
proposition follows. L

1444 Uchiyama



Lemma 12. Let vN
T be the largest height of the jumps of yt :=YE

t, N(J),
0 [ t [ T, namely vN

T =sup 0 [ t [ T |yt − yt − 0 |. Then limN Q . Peq[vN
T > e]=0

for every e > 0.

Proof. Since vN
T [ N−3/2 sup 0 [ t [ N2T supx |NJ(x/N)| [gx(t)+gx+1(t)],

it suffices to show that for each J ¥ C.

0 (R),

lim
N Q .

Peq
5 sup

0 [ t [ T
C
x

J(x/N) gx(t) > N3/26=0. (24)

By a maximal inequality for reversible Markov processes (cf. ref. 10,
p. 346) we have for any measurable F(g) and positive number M

Peq
5 sup

0 [ t [ N2T
|F(g(t))| > M6 [

e
M

`n(F2)+N2TD{F},

where D{F}=1
2 ;b ¥ Z n((CbF)2 cb). For F(g)=N−1 ;x J(x/N) gx we see

that D{F} [ N−3 ||NJ||2
N, L2 n(g0c01) and n(F2) [ n(g2

0) ||J||2
N, L2, which clearly

imply (24). L

Proof of Theorem 1. Let YN
t =(YP

t, N, YE
t, N) be as in Section 1. Let

J
¯

=(J1, J2)T ¥ C.

0 (R) × C.

0 (R) and for Y=(YP, YE)T ¥ H (−l) × H (−l) write

(Y, J
¯

)=YP(J1)+YE(J2).

We are to find a suitable expression of (YN
t , J

¯
). To make neat the expres-

sion we introduce some notations. Define YN=(YP, N, YE, N)T by

YP, N(J)=N−1/2 C
x ¥ Z

J(x/N)(tx − p)

and analogously for YE, N; pick up f
¯

=(f1, f2) ¥ Fc, b ×Fc, b and put

F(g)=(YN, J
¯

) −
1

N3/2 C
x ¥ Z

NJ
¯
1 x

N
2 · yx f

¯
(g),

where NJ(x/N)=N[J((x+1)/N)− J(x/N)]. Also put

h
¯

f(g)=(wP
01(g), wE

01(g))T − Lf
¯

(g) − D(N−t, N−g)T,

(RN, f
t , J

¯
)=F

t

0
`N C

x
NJ

¯
1 x

N
2 · yxh

¯
f(g(N2s)) ds,

(dN, f
t , J

¯
)=

1
N3/2 C

x
NJ

¯
1 x

N
2 · [yx f

¯
(g(N2t)) − yx f

¯
(g(0))].
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( The underline is omitted from f
¯

appearing in the super-script.) We
compute N2LL(n)F, which results in

(YN
t , J

¯
) − (YN

0 , J
¯

)=F(g(N2t)) − F(g(0))+(dN, f
t , J

¯
)

=F
t

0
`N C

x
NJ

¯
1 x

N
2 · Dyx(N−t, N−g)T (N2s) ds

+(MN, f
t , J

¯
)+(RN, f

t , J
¯

)+(dN, f
t , J

¯
), (25)

where (N−t, N−g)T (t)=(N−t(g(t)), N−g(g(t)))T.
(MN, f

t , J
¯

) is a martingale whose quadratic variation process is given
by

OMN, f(J
¯

)Pt=F
t

0
GN

F (g(N2s)) ds

where

GN
F =N2 C

b ¥ Z*
(CbF)2 cb. (26)

On writing xb for min{xŒ, xœ} if b=(xŒ, xœ),

:GN
F −

1
N

C
b ¥ Z*

[NJ
¯

(xb/N) · (Cb{txb
+f̃1}, Cb{gxb

+f̃2})T]2 cb
: [ AN

f, J(g)
N2 ,

with supN Eeq[AN
f, J] < .. The law of large numbers therefore yields that as

N Q .,

GN
F (g(N2t)) 0 F

T
J
¯

Œ(h) · ĉ(p, r; f
¯

) J
¯

Œ(h) dh,

which will identify the variance of the fluctuation term of the limit process.
The Centsov’s condition for the tightness for Mt :=(MN, f

t , J
¯

) is easy to
see, e.g.,

Eeq[|Mt − Mr |2 |Mr − Ms |]

[ `Eeq[(Eeq[|Mt − Mr |2 |s{Mu: u [ r}])2 |Mr − Ms |2]

[ Cf, J |t − s|3/2 (0 < s < r < t),

where Cf, J may be taken in the form C1
f, J+N−1/2C2

f, J with C1
f, J=

a constant times ||NJ
¯

||3
N, L2 `En[((|C01{t0 − f̃1}|2+|C01{g0 − f̃2}|2) c01)3]. By
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employing Doob’s inequality and noticing ||NJ||N, L2 [ ||JŒ||L2 we also
observe that

Eeq[ sup
0 [ t [ T

|Mt |2] [ 8 ||JŒ||2
L2 En 5(1+g2

0) c01+sf C
b

|Cbf
¯

|2 cb
6 , (27)

sf denotes the minimum of n \ 1 such that f ¥ FL(n − 1).
Clearly

sup
t [ T

|(dN, f
t , J

¯
)| [ 2N−1/2 ||J

¯
Œ||L1 ||f

¯
||.. (28)

The term RN, f
t is estimated according to Proposition 11, which combined

with Proposition 5 shows that

O

N Q .

Eeq[ sup
0 [ t [ T

|(RN, f
t , J

¯
)|2] [ CT ||J

¯
Œ||2

L2 ||ĉ(p, r) − ĉ(p, r; f
¯

)||, (29)

where ||A|| is the operator norm of 2 × 2 matrix relative to the usual inner
product in R × R.

By summation by parts the first term on the right-hand side of
(25) may be written as > t

0 YN
s (DT DJ

¯
) ds where DJ(h)=N2[J(h+1/N)+

J(h − 1/N) − 2J(h)]. Apparently this term would give the drift term of the
equation in the limit. It is convenient to consider the process

(ỸN
t , J

¯
) :=(YN

t , J
¯

) − (RN, f
t , J

¯
),

in terms of which Eq. (25) may be rewritten as

(ỸN
t , J

¯
)=(ỸN

0 , J
¯

)+F
t

0
(ỸN

s , DT DJ
¯

) ds+F
t

0
(RN, f

s , DT DJ
¯

) ds

+(MN, f
t , J

¯
)+(dN, f

t , J
¯

).

We have the bound Eeq |(YN
s , DT DJ

¯
)|2 [ C ||J

¯
œ||2

L2 (with C=2[p(1 − p)+
n((g0 − r)2)] ||D|| ), from which we infer that the laws of the processes

F
t

0
(ỸN

s , DT DJ
¯

) ds+F
t

0
(RN, f

s , DT DJ
¯

) ds=F
t

0
(YN

s , DT DJ
¯

) ds

constitute a tight family. Hence, by virtue of the equation above, the same
is true also for the processes (ỸN

t , J
¯

).
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Let Yf
t , Af

t , and Mf
t be limit processes of ỸN

t , > t
0 RN, f

s ds, and MN, f
t ,

respectively. By virtue of Lemma 12 these are all continuous processes. We
have the following stochastic equation

(Yf
t , J

¯
)=F

t

0
(Yf

s , DTJ
¯

œ) ds+(Af
t , DTJ

¯
œ)+(Mf

t , J
¯

).

The sum of the first two terms on the right side is to be a limit pro-
cess of > t

0 (YN
s , DTJ

¯
œ) ds, hence its law is independent of f. The third

term is a continuous martingale whose quadratic variation process is
(J
¯

Œ, ĉ(p, r; f) J
¯

Œ)L2 t; hence, by Lévy’s theorem, it is a Brownian motion. It
in particular follows that the family of laws of processes (Mf, J

¯
) is tight

if f is varied so that ||ĉ(p, r) − ĉ(p, r; f)|| Q 0, in which case the tightness
for processes (Yf

t , J
¯

) also follows and, in view of (29), any limit process,
(Yt, J

¯
) say, satisfies

(Yt, J
¯

)=F
t

0
(Ys, DTJ

¯
œ) ds+(Bt, J

¯
), (30)

where (Bt, J
¯

) is a Brownian motion whose variance is (J
¯

Œ, ĉ(p, r) J
¯

Œ)L2 t.
We claim that a sequence of fN can be suitably chosen so that the

sequence of laws of processes (ỸN
t , J

¯
), 0 [ t [ T, N=1, 2,... is tight for

every J
¯

and every limit process is a solution of the stochastic integral
equation (30). For the proof first observe, with the help of (27), that MN, f,
as an H (−l)-valued process, converges in law to Mf, which, being an
H (−l)-valued Brownian motion, in turn converges to the Brownian motion
B as ĉ(p, r; f) Q ĉ(p, r). This shows that we can choose fN so that the
family of the laws of H (−l)-valued processes MN, fN is tight and ĉ(p, r; fN)
Q ĉ(p, r). We can modify this choice of fN so that it in addition holds true
that N−1/2 ||fN ||. Q 0, so that owing to (28)

Eeq[ sup
0 [ t [ T

[|(dN, fN
t , J

¯
))|+|(RN, fN

t , J
¯

))|2]] Q 0 (N Q .)

for every J ¥ C.

0 (R). This proves the claim, in particular the tightness for
(YN

t − RN, fN
t , J

¯
). The tightness for (YN

t , J
¯

) incidentally follows and any
limit process of it solves (30). Finally the tightness of YN

t as an H (−l)-valued
process (for l > 2) follows from Lemma 13 below. Since the solution of
(30) is unique in law, the proof of Theorem 1 is now complete. L

Lemma 13. For J
¯

=(J1, J2)T ¥ C.

0 (R) × C.

0 (R),

Eeq[ sup
0 [ t [ T

|(YN
t , J

¯
)|2] [ C1T ||J

¯
Œ||2

L2.
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Proof. The lemma follows from inequality (23) applied with H(g)=
(YN, J

¯
)(g) since 2En[H(−N2L) H]=En[GN

H] [ C ||J
¯

Œ||2
N, L2 where GN

F is
defined by (26) (for the last inequality set f=0 in (27)). L

4. CLOSED FORM

Fixing the parameters p ¥ (0, 1) and r > p, we denote by E the expec-
tation under the measure n=np, r. This and the next sections will not
concern the process measure Peq at all.

Let L be an interval of Z. Suppose we are given a function G of g ¥ ZL
+

and define its ‘‘gradient’’ along the oriented bond b ¥ Lg by

Yb(g) :=CbG(g)=G(Sbg) − G(g). (31)

Then Yb can be ‘‘integrated’’ to recover G up to an additive constant by the
formula

C
n

k=1
Yb(k)(g(k − 1))=G(g(n)) − G(g(0)) (32)

which holds for every S-chain {g(k)}n
k=0 on L, namely for every sequence

g(k), k=0,..., n in ZL
+ such that for every k,

,b(k) ¥ Lg, g(k)=Sb(k)g(k − 1).

Conversely suppose we are given a set of functions Yb on ZL
+ such that the

sum on the left-hand side of (32) vanishes whenever the chain {g(k)}n
k=0 is

closed in the sense that g(n)=g(0). Then the formula (32) defines a func-
tion G (on ZL

+ ) up to an additive constant and Yb is the ‘‘gradient’’ of G.
We call a set of functions Yb described above a closed form on L. A family
of functions Yb on X is said to be closed (on Z), if L is a finite interval of
Z and Yb (b ¥ Lg) regarded as functions on ZL

+ with each configuration
outside L frozen constitutes a closed form on L. From (31) it follows that

Yy, x(g)=G(Sy, xg) − G(g)=−G(Sx, ySy, xg)+G(Sy, xg)=−Yx, y(Sy, xg),

if Sy, xg ] g and Yy, x(g)=0 if Sy, xg=g. Thus if b=(x, y) ¥ Lg and
bŒ=(y, x), then

YbŒ(g)=−Yb(SbŒg) 1(SbŒg ] g).
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Definition 2. A function Y ¥ L2(c01n)=L2(c01np, r, X) is called a
germ of a translation covariant closed form or simply a germ, if the family
{Yb} given by the following two relations

(i) Yx, x+1=yxY;

(ii) Yx+1, x(g)=−Yx, x+1(Sx+1, xg) 1(Sx+1, xg ] g)

constitutes a closed form on Z.

Every element of {C01f̃: f ¥ Fc} is a germ. Both

C01{t0}=−(1 − t1) t0 and C01{g0}=−(1 − t1) g0 − 1(g0 \ 2) t1

are also germs since yxC01{g0}=Cx, x+1{gx}=−Cx, x+1{;y ygy} and simi-
larly for C01{t0}. The next theorem states that every germ is a limit of the
linear combinations of these functions, namely functions of the form

Y01
a, b, f :=C01{at0+bg0+f̃}.

Theorem 14. The set of all germs of translation covariant closed
forms agrees with the closure of the space {Y01

a, b, f: a, b ¥ R, f ¥ Fc} in
L2(c01n).

Proof of The Inclusion Relation (20). By virtue of Theorem 14
it suffices to prove that every element of Hp, r is a germ. Let Y ¥ Hp, r.
According to the definition of Hp, r there exists a sequence of functions
fK ¥ Fc (K ¥ N) such that Av|x| [ K E[(C01yx fK)2 c01] [ C and if YK :=
C01 Av|x| [ K yx fK, then the sequence (YK) converges to Y strongly in
L2(c01n). From the condition on fK just mentioned it is clear that
sup |x| [ K E[(C01yx fK)2 c01] [ (2K+1) C; in particular

lim
K Q .

K−2 sup
|x| [ K

E[(C01yx fK)2 c01]=0. (33)

Set Yx, x+1
K :=yxYK. Then it is not hard to deduce from (33) that any limit

of (Yb
K)b is a closed form. Consequently, Y=lim YK is a germ. L

The rest of this section (together with the next one) is devoted to the
proof of Theorem 14. We shall adapt the lines of refs. 8 and 11.

We introduce the truncated conditional expectation

Yb
n :=E[Yb | FL(2n)] · 1 1 |t|L(2n)

4n+1
>

p
2

,
|g|L(2n)

4n+1
< 2r2 .

1450 Uchiyama



Since the transformations Sb, b ¥ L(2n) commute with the conditional
expectation and both |t|L(2n) and |g|L(2n) are invariant under them, the set of
functions Yb

n constitutes a closed form on L(2n). Hence for each n we can
find a function G2n ¥ FL(2n) such that

CbG2n(g)=Yb
n for b ¥ Lg(2n),

OG2nP2n, m, E=0 for m=1, 2,..., and E \ m

and

G2n(g)=0 unless
|t|L(2n)

4n+1
>

p
2

,
|g|L(2n)

4n+1
< 2r.

Put

fn=
1
2n

E[G2n | FL(n)],

and

Yn=C
y

C01yy fn=C01f̃n.

We are to show that the functions Yn converge along a subsequence,
weakly in L2(c01n), to a function of the form Y+C01{at0+bg0}. This will
show that the set of germs is included in the closure of the set of Y01

a, b, f,
and thus conclude the proof since the inclusion in the opposite direction is
obvious.

Define

s+
n =y−nCn, n+1 fn and s−

n =yn+1C−n − 1, −n fn.

Then, on using yyCx, z f=Cx+y, z+yyy f, Yn may be written as

Yn=C01 C
(−y, −y+1) ¥ L*(n)

yy fn+s+
n +s−

n .

The first term equals (2n)−1 ;(−y, −y+1) ¥ L*(n) yyY−y, −y+1
n , which converges to

Y as n Q . strongly in L2(c01n).

Lemma 15. The expectations E[|s±
n |2 c01] are bounded.
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Taking this lemma for granted for the time being we prove that if s± is
a weak limit point of s±

n in L2(c01n), then they are necessarily of the form

s±=C01{a±t0+b±g0} (34)

with some constants a± and b±. This implies the assertion of Theorem 14
since the strong closure and the weak closure of a convex set in a Hilbert
space coincides. In what follows we shall provide a proof of (34), in which,
although we can follow ref. 11 (see also refs. 10 and 14), we shall proceed
somewhat differently.

First consider s+. We introduce the operators pk
x and p−

x which are
defined by

pk
x f(g)=f(Rk

xg) − f(g) (k=0, 1, 2,...)

and

p−
x f(g)=f(g − dx) − f(g) (gx \ 2),

where Rk
xg (resp. g − dx ) stands for the configurations which are obtained

from g by replacing its (spin) value at the site x by k (resp. by reducing its
(energy) value at x by 1). By means of these operators s+

n may be written in
the form

s+
n =C01hn=t0(1 − t1) p0

0hn+1(g0 \ 2) t1p−
0 hn (35)

where

hn=y−n fn=
1
2n

E[y−nG2n | F{ − 2n,..., −1, 0}]. (36)

It would be clear that s+ is a function of {gx: x [ 1}. Since CbG2n is
bounded in L2(n) if b ¥ (L(2n))g and Cb commutes with the operation of
taking weak limit, it holds that

Cx − 1, xs+=0 for x < 0.

In view of Hewitt–Savage zero-one law, these imply that s+ depends only
on {g0, g1}. We then infer from (35) and (36) that it is of the form

s+(g)=t0(1 − t1) j(g0)+1(g0 \ 2) t1k(g0)
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where j and k are functions on N and {2, 3,...}, respectively. Incidentally,
we have, as n Q . (along an appropriate subsequence),

t0p0
0hn(g) Q t0j(g0) and 1(g0 \ 2) p−

0 hn(g) Q 1(g0 \ 2) k(g0),
(37)

where the convergence is weak in L2(n, X). Notice that (37) is valid irre-
spectively of the values of t1 since hn does not depend on it.

Our task is to prove that k is constant and

j(k)=k(2) k+const

since C01{at0+bg0}=t0(1 − t1)(−bg0 − a) − b1(g0 \ 2) t1. For the proof
we consider the identity

pzr
0, −1s+

n (g)=s+
n (S0, −1

zr g) − s+
n (g)

when g0 \ 3, t−1=1. The first term on the right side converges to

s+(S0, −1
zr g)=s+(g − d0).

We compute the limit of the left hand side when t1=1. Since t1s+
n =

t11(g0 \ 2) p−
0 hn and since p−

0 and pzr
0, −1 commute if g0 \ 3, t1=t−1=1,

we deduce that for such configurations,

pzr
0, −1s+

n =pzr
0, −1p−

0 hn=
1
2n

t−1p−
0 (y−nYn − 1, n

n )

which vanishes in the weak limit. As a net result we have

s+(g)=s+(g − d0) if g0 \ 3, t1=1.

This shows that k(k)=k(k − 1) for k \ 3, hence k is constant.
The rest is easy. Indeed expressing p0

0hn by means of p−
0 hn as follows

(1 − t1) s+
n (g)=(1 − t1) t0p0

0hn(g)

=t0(1 − t1)[p−
0 hn(g)+p−

0 hn(g − d0)

+ · · · +p−
0 hn(g − (g0 − 2) d0)+p0

0hn(g − (g0 − 1) d0)]

(g0 \ 2) and passing to the limit with the help of (37) we conclude that

(1 − t1) s+=t0(1 − t1)[(g0 − 1) k(2)+j(1)].

Hence j(k)=k(2) k+j(1) − k(2) as required.
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As for s− we have

s−
n =C01h−

n =t0(1 − t1) p
g0
1 h−

n +1(g0 \ 2) t1p+
1 h−

n

where h−
n =yn+1 fn=(2n)−1 E[yn+1G2n | F{1, 2,..., 2n+1}] and p+

x f=f(g+dx)
− f(g), and derive, as before,

s−(g)=t0(1 − t1) j(g0)+1(g0 \ 2) t1k(g1).

This time we have t2pzr
1, 2 act on s−

n on the set {g1 \ 2} to prove that k is
constant. In the same way as in the case of s+ we accordingly deduce that
j(k)=k(1) k+j(1) − k(1).

Theorem 3 has been proved by taking Lemma 14 for granted. The
proof of Lemma 14, being involved, will be given in the next section.

5. PROOF OF LEMMA 15

We prove the boundedness of E[|s+
n |2 c01] only. The proof for

E[|s−
n |2 c01] is the same. The parameters p and r are fixed and often

omitted from the notations. We recall that s+
n =C01hn, with hn=

1
2n E[y−nG2n | F{ − 2n,..., −1, 0}], where E indicates the expectation by n. For the
proof we need the following properties of G2n ¥ FL(2n) (and only these).

(a) sup b ¥ L*(2n) D
b
p, r{G2n} [ C;

(b) OG2nP2n, m, E=0 for m \ 1, E \ m;

(c) G2n(g)=0 unless 1
|L(2n)| |t|L(2n) > p

2 , 1
|L(2n)| |g|L(2n) < 2r.

where Db
p, r{G2n} :=1

2 E[|CbG2n |2 cb]. In order to deduce the required bound
from these conditions the following result from ref. 15 is fundamental.

Theorem B. Suppose that the conditions (1) through (3) are
satisfied. Then there exists a constant C such that for all positive integers
n, m, and E, satisfying m [ |L(n)| and E \ m, and for all real functions f
on ZL(n)

+ ,

O(f −OfPn, m, E)2Pn, m, E [ C
E
m

· n2Dn, m, E(f). (38)

The next lemma also is a consequence of a result of ref. 15. The defi-
nition of transformation Sx, y

zr (and accordingly of the operator pzr
x, y ) is

extended to all pairs x, y in Z that are not necessarily adjacent to each
other.
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Lemma 16. Suppose the condition (3) to hold. Then there exists a
constant C such that for all real functions f on ZL(n)

+ and for x ¥ L(n),

C
y: y ] x

Oczr(gx) ty(pzr
x, y f)2Pn, m, E [ Cn2E · sup

b ¥ L*(n)
Db

n, m, E{f}.

Proof. In ref. 15 (Lemma 4) it is shown (under the condition (3))
that for any x, y ¥ L(n) (x ] y), the expectation Oczr(gx) ty[pzr

x, y f]2Pn, m, E is
bounded by a constant multiple of

|x − y| C
b ¥ (I[x, y])*

O(Cb f)2 cbty+(pex
b f)2 czr(gy)Pn, m, E,

where I[x, y] stands for the interval whose end points are x and y. Taking
summation over y ] x and dominating |x − y| by 2n, ;y czr(gy) by a1E,
m by E and (pex

b f)2 by (Cb f)2 cb/a0 we find the inequality of the lemma to
hold. L

Now we proceed into the proof of Lemma 15. Let n1=n1
p, r denote the

one site marginal of np, r:

n1(r)=np, r({g: g0=r}),

and Hr, r=0, 1, 2,..., the functions of zn :=(g−2n,..., g−1) defined by

Hr(zn)=hn |g0=r=
1
2n

E[y−nG2n | g0=r, F{ − 2n,..., −1}]

(where E[ · | g0=r, F]=E[ · 5 {g0=r} | F]/P[g0=r]). Then

E[|s+
n |2 c01]=E[|C01hn |2 c01]

=E[|pex
01hn |2 cex(g0)(1 − t1)]+E[|pzr

01hn |2 czr(g0) t1]

=(1 − p) C
.

r=1
n1(r) cex(r) E |Hr − H0 |2

+pa C
.

r=1
n1(r) E |Hr+1 − Hr |2. (39)

Here a=a(p, r) and in the last equality we applied the relation that
n1(r) czr(r)=an1(r − 1).

In the first two lemmas (but not in the third) that follow we fix zn and
treat Hr as a function of r. The estimates concerning Hr given below will be
uniform in zn. The expectation by the distribution n1 on the variable g0 is
denoted by E0.
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Lemma 17. There exists a constant C independent of n and zn such
that

pE0[(Hg0
− E0[Hg0

| t0=1])2 | t0=1] [ C C
.

r=1
n1(r) |Hr+1 − Hr |2.

Proof. This is nothing but Lemma 4.2 (one site spectral gap esti-
mate) of ref. 12, where it is shown that C can be independent of r (for the
present purpose it may depend on r). L

Lemma 18. There exists a constant C independent of n and zn such
that

C
.

r=1
n1(r) cex(r) |Hr − H0 |2

[ C C
.

r=1
n1(r) |Hr+1 − Hr |2+C(E0[Hg0

| t0=1] − H0)2.

Proof. On using czr(r) n1(r)=an1(r − 1), r \ 2, the left-hand side of
the inequality of the lemma is bounded by

n1(1) cex(1) |H1 − H0 |2+2ā C
.

r=2
an1(r − 1) |Hr − 1 − H0 |2

+2ā C
.

r=2
an1(r − 1) |Hr − Hr − 1 |2,

where ā=sup r \ 2 cex(r)/czr(r). Setting Ĥ1=E0[Hg0
| t0=1] we bound the

sum of the first two terms by a constant multiple of

C
.

r=1
n1(r) |Hr − H0 |2 [ C

.

r=1
n1(r)[2 |Hr − Ĥ1 |2+2 |Ĥ1 − H0 |2].

Now the required inequality follows from the preceding lemma. L

Lemma 19. For some constant C, ;.

r=1 n1(r) E |Hr+1 − Hr |2 [ C.

Proof. Fixing zn=(g−2n,..., g−1) (and n) as before, we consider a
function f=fzn

(g0,..., gn) defined by

f(g0, g1,..., gn)=
1
2n

E[y−nG2n | zn, g0, g1,..., gn].
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Let Pn denote the probability law of the variables g0, g1,..., gn under
P=np, r and En the expectation by Pn. Then

Hr+1=En[f | g0=r+1]

= C
n

x=1
En[Y−1tx f; Y > 0 | g0=r+1]+Rr+1

where Rr+1=En[f; Y=0 | g0=r+1] and

Y=t1+ · · · +tn.

By the identity n1(r+1) czr(r+1)=n1(r) a and the reversibility we see that

En[tx f | g0=r+1, s{Y}]=
1
a

En[czr(gx)(f p Sx, 0
zr ) | g0=r, s{Y}],

provided that r \ 1. (s{Y} denotes the s-field generated by Y.) Define
M=M(g1,..., gn) by

M=˛ (aY)−1 ;n
x=1 czr(gx) if Y ] 0

1 if Y=0.

By conditioning on t1,..., tn it is assured that En[M | g0]=1. From these
identities we deduce that

Hr+1 − Hr= C
n

x=1
En[(aY)−1 czr(gx) pzr

x, 0 f; Y \ 1 | g0=r]

+En[(M − 1) f | g0=r]+(Rr+1 − Rr)

=Ar+Br+(Rr+1 − Rr) (say).

First we compute ;.

r=1 n1(r) A2
r . To this end we insert the event

Y \ pn/2 in the conditional expectation sign. By Schwarz inequality and
the identity En[czr(gx) | g0]=a the resulting expectation is estimated as
follows:

(En[(aY)−1 czr(gx) pzr
x, 0 f; Y \ pn/2 | g0=r])2

[
1

(pn/2)2 a
En[czr(gx)(pzr

x, 0 f)2 | g0=r].
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As for the other half we have

(En[(aY)−1 czr(gx) pzr
x, 0 f; 1 [ Y < pn/2 | g0=r])2

[
1
a2 En[czr(gx)(pzr

x, 0 f)2 | g0=r] En[czr(gx); Y < pn/2],

so that it is negligible if compared with the first half since the last expecta-
tion is exponentially small as n becomes large. Therefore, by employing
Schwarz inequality again,

C
.

r=1
n1(r) A2

r [
CŒ

n
C
n

x=1
En[czr(gx)(pzr

x, 0 f)2].

Using Jensen’s inequality, the reversibility, Lemma 16 (with 2n instead of n)
together with the property (c) (satisfied by G2n ) and finally (a) in turn we
see that

C
n

x=1
E[czr(gx)(pzr

x, 0 f)2]=
1

4n2 C
n

x=1
E[czr(g0)(pzr

x, 0G2n)2]

[ Cœn sup
b ¥ L*(2n)

Db
p, r(G2n) [ CŒŒŒn.

(Here f is integrated as a function of zn and g0, g1,..., gn.) Thus we have
the bound E[;.

r=1 n1(r) A2
r ] [ Cœ.

Next we compute ;.

r=1 n1(r) B2
r . On writing M − 1=(aE)−1 ×

;x (czr(gx) − atx), it is clear that En |M − 1|2=O(1/n). Hence

C
.

r=1
n1(r) B2

r [
C
n

En[f2t0].

But by virtue of the spectral gap estimate given in Theorem B it follows
from the conditions (a) through (c) that

E[f2] [ CŒn. (40)

In fact, by employing Jensen’s inequality, with the help of the conditions
(b) and (c) on G2n Theorem B shows that

(4n)2 E[f2] [ E[|G2n |2] [ Cn2DL(2n)
p, r (G2n).

Hence by (a) we conclude (40). It would be clear from this that the sum
;.

r=1 n1(r) E[|Rr |2] is negligible. The proof of Lemma 19 is now com-
plete. L
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Lemma 20. E[(E0[Hg0
| t0=1] − H0)2] [ C.

Proof. We can proceed as in the preceding lemma with the exclusion
operator pex

0, x replacing the zero range operator pzr
0, x. The argument is much

simpler and essentially the same as the corresponding one for the non-gra-
dient exclusion model as treated in ref. 8. L

The boundedness of E[|s+
n |2 c01] is now obtained by combining (39)

and Lemmas 18 through 20.
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